Peptide Hormone Biogenesis

Peptides serve important functions as peptide hormones and growth factors for the regulation of plant development. Peptides also serve as signal molecules for the activation of plant defense responses agianst pests and pathogens. Such peptides are generally synthesized as larger and inactive precursor proteins. Proteolytic processing of the precursor is required to produce the bioactive peptide. The proteases responsible for pepetide maturation are thus indispensable for peptide hormone signaling. We aim to identify these proteases and to understand their function as regulatory factors during peptide hormone biogenesis.

We could show that the enzymes responsible for peptide hormone maturation belong to the family of subtilisin-like proteases (subtilases). 56 subtilases are encoded in the Arabidopsis gemnome, and 86 subtilase genes are found in the tomato genome. Subtilases are also synthesized as inactive pre-pro-proteins. For activation, the inhibitory prodomain is cleaved off within the secretory pathway. We investigate the physiological role of individual subtilases  by gain- (overexpression) and loss-of-function analysis (T-DNA insertion and CRISP/Cas9 mutagenesis). Reprter genes are used to analyze the cell type and tissue-specific expresssion of subtilases in transgenic plants.  

The subtilase gene family in Arabidopsis thaliana

 According to phylogenetic relationship, the 56 Arabidopsis subtilases can be grouped into 6 families.

Previous projects dealt with subtilase-mediated maturation of the peptide hormone IDA during the abscission of floral organs in Arabidopsis, and the maturation of PSK for stress-induced flower drop in tomato. Present projects address (i) the contribution of subtilases to the processing of TWS1 for the regulation of seed development, (ii) the proceesing of systemin as part of the wound response of tomato plants, and (iii) the function of CIF peptides during pollen development. Common to all projects, we investigate the biochemistry of peptide precursor processing in vitro. We further use genetic tools to address the function of subtilases for peptide maruration in vivo. Cell biological methods are used to investigate the subcellular localisation of peptide maturation.    

Publications

Greifenhagen, A., Ruwe, H., Zimmer, V., Messerschmidt, J., Prasad, D., Bhukya, N., Kenea, H.D., Schaller, A., Spallek T. (2024). The peptide hormone PjCLE1 stimulates haustorium formation in the parasitic plant Phtheirospermum japonicum. Proc. Natl. Acad. Sci. USA 121: e241582121 Abstract (in PubMed)Journal Link

 

Schaller, A. (2024). REGENERATION FACTOR 1, a peptide boost for wound healing and plant biotechnology. Mol. Plant 17: 1333-1334. Abstract (in Pubmed)Journal Link
Wang, X., Li, R., Stintzi, A., Schaller, A. (2024). Automated Real-Time Monitoring of Extracellular pH to Assess Early Plant Defense Signaling. In: Schaller, A. (eds) Plant Peptide Hormones and Growth Factors. Meth. Mol. Biol., vol 2731:169-178. Abstract (in PubMed)Journal Link

 

Bühler, E., Schaller, A., Stührwohldt, N. (2024). A Quick Method to Analyze Peptide-Regulated Anthocyanin Biosynthesis. In: Schaller, A. (eds) Plant Peptide Hormones and Growth Factors. Meth. Mol. Biol., vol 2731:143-156 Abstract (in Pubmed)Journal Link
Elsäßer, G., Seidl, T., Pfannstiel, J., Schaller, A., Stührwohldt, N. (2024). Characterization of Prolyl-4-Hydroxylase Substrate Specificity Using Pichia pastoris as an Efficient Eukaryotic Expression System. In: Schaller, A. (eds) Plant Peptide Hormones and Growth Factors. Meth. Mol. Biol., vol 2731: 59-80. Abstract (in PubMed)Journal Link

 

Yang, H., Kim, X., Skłenar, J., Aubourg, S., Sancho-Andrés, G., Stahl, E., Guillou, M.-C., Gigli-Bisceglia, N., Tran Van Canh, L., Bender, K.W., Stintzi, A., Reymond, P., Sánchez-Rodríguez, C., Testerink, C., Renou, J.-P., Menke, F.L.H., Schaller, A., Rhodes, J., Zipfel, C. (2023) Subtilase-mediated biogenesis of the expanded family of SERINE RICH ENDOGENOUS PEPTIDES. Nat. Plants. 9(12):2085–2094.Abstract (in Pubmed)Journal Link
Bühler, E., Fahrbach, E., Schaller, A., Stührwohldt, N. (2023) Sulfo-peptide CLEL6 inhibits anthocyanin biosynthesis in Arabidopsis thaliana. Plant Physiol. 193:809-820 Abstract (in PubMed)Journal Link

 

Royek, S., Brück, S., Pfannstiel, J., Stintzi, A., Schaller, A. (2023) Improved identification of protease cleavage sites by in-gel reductive dimethylation. In: Lois, L.M., Trujillo, M. (eds) Plant Proteostasis. Meth. Mol. Biol., vol 2581:337–349.Abstract (in Pubmed)Journal Link
Reichardt, S., Stintzi, A., Schaller, A. (2023) Assay for phytaspase-mediated peptide precursor cleavage using synthetic oligopeptide substrates. bio-protocol 13(3): e4608 Abstract (in PubMed)Journal Link

 

Brück, S., Pfannstiel, J., Ingram, G., Stintzi, A., Schaller, A. (2023) Analysis of peptide hormone maturation and processing specificity using isotope-labeled peptides. Meth. Mol. Biol., vol. 2581:323-335Abstract (in Pubmed)Journal Link
Stintzi, A., Schaller, A. (2022) Biogenesis of post-translationally modified peptide signals for plant reproductive development. Curr. Opin. Plant Biol. 69: 102274 Abstract (in PubMed)Journal Link

 

Truskina, J., Brück, S., Stintzi, A., Boeuf, S., Doll, N.M., Fujita, S., Geldner, N., Schaller, A., Ingram, G.C. (2022) A peptide-mediated, multilateral molecular dialogue for the coordination of pollen wall formation. Proc. Natl. Acad. Sci. USA, 119 (22): e2201446119Abstract (in Pubmed)Journal Link
Royek, S., Bayer, M., Pfannstiel, J., Pleiss, J., Ingram, G., Stintzi, A., Schaller, A. (2022) Processing of a plant peptide hormone precursor facilitated by post-translational tyrosine sulfation. Proc. Natl. Acad. Sci. USA, 119: e2201195119 Abstract (in PubMed)Journal Link

 

Stührwohldt, N., Bühler. E., Sauter, M., Schaller, A. (2021) Phytosulfokine (PSK) precursor processing by subtilase SBT3.8 and PSK signaling improve drought stress tolerance in Arabidopsis. J. Exp. Bot. 72: 3427–3440Abstract (in Pubmed)Journal Link
Ogawa, S., Wakatake, T., Spallek, T., Ishida, J.K., Sano, R., Kurata, T., Demura, T., Yoshida, S., Ichihashi Y., Schaller, A., Shirasu, K. (2021) Subtilase activity in intrusive cells mediates haustorium maturation in parasitic plants. Plant Physiol. 185: 1381-1394 Abstract (in PubMed)Journal Link

 

Stührwohldt, N., Ehinger, A., Thellmann, K., Schaller, A. (2020)  Processing and formation of bioactive CLE40 peptide are controlled by post-translational proline hydroxylation. Plant Physiol. 184:1573-1584 Abstract (in Pubmed)Journal Link
Stührwohldt, N., Scholl, S., Lang, L., Katzenberger, J., Schumacher, K., Schaller A. (2020) The biogenesis of CLEL peptides involves several processing events in consecutive compartments of the secretory pathway. eLife 9:e55580Abstract (in Pubmed)Journal Link
Reichardt, S., Piepho, H.-P., Stintzi, A., Schaller, A. (2020):  Peptide signaling for tomato flower drop. Science 367: 1482-1485Abstract (in Pubmed)Journal Link
Doll, N.M., Royek, S., Fujita, S., Okuda, S., Chamot, S., Stintzi, A., Widiez, T., Hothorn, M., Schaller, A., Geldner, N., Ingram, G. (2020) A two-way molecular dialogue between embryo and endosperm is required for seed development. Science 367: 431-435Abstract (in Pubmed)Journal Link
Stührwohldt, N., Schaller, A. (2019):  Regulation of plant peptide hormones and growth factors by post-translational modification. Plant Biol. 21: 49-63Abstract (in Pubmed)Journal Link
Schaller, A., Stintzi, A., Rivas, S., Serrano, I., Chichkova, N.V., Vartapetian, A.B., Martínez, D., Guiamét, J.J., Sueldo, D.J., van der Hoorn, R.A.L., Ramírez, V., Vera P. (2017): From structure to function - a family portrait of plant subtilases. New. Phytol. DOI: 10.1111/nph.14582Abstract (in Pubmed)Journal Link
Beloshistov, R.E., Dreizler, K., Galiullina, R.A., Tuzhikov, A.I., Serebryakova, M.V., Reichardt, S., Shaw, J., Taliansky, M.E., Pfannstiel, J., Chichkova, N.V., Stintzi, A., Schaller, A., Vartapetian, A.B. (2017):  Phytaspase-mediated precursor processing and maturation of the wound hormone systemin. New. Phytol. DOI: 10.1111/nph.14568Abstract (in Pubmed)Journal Link
Hohl, M., Stintzi, A., Schaller, A. (2017): A novel subtilase inhibitor in plants shows structural and functional similarities to protease propeptides. J. Biol. Chem. 292: 6389-6401 Abstract (in Pubmed)Journal Link
Schardon., K., Hohl, M., Graff, L., Schulze, W., Pfannstiel, J., Stintzi, A., Schaller, A. (2016): Precursor processing for plant peptide hormone maturation by subtilisin-like serine proteinases. Science, 354: 1594-1597Abstract (in Pubmed)Journal Link
Meyer, M., Leptihn, S., Welz, M., Schaller, A. (2016): Functional characterization of propeptides in plant subtilases as intramolecular chaperones and inhibitors of the mature protease. J. Biol. Chem. 291: 19449–19461Abstract (in Pubmed)Journal Link
Meyer, M., Huttenlocher, F., Cedzich, A., Procopio, S., Stroeder, J., Pau-Roblot, C., Lequart-Pillon, M., Pelloux, J., Stintzi, A., Schaller, A. (2016): The subtilisin-like protease SBT3 contributes to insect resistance in tomato. J. Exp. Bot. 67: 4325-4338Abstract (in Pubmed)Journal Link
Sénéchal, F., Graff, L., Surcouf, O., Marcelo, P., Rayon, C., Bouton, S., ­­Fournet, F., Mareck, A., Mouille, G., Stintzi, A., Höfte, H., Lerouge, P., Schaller, A., Pelloux, J. (2014): Arabidopsis PECTIN METHYLESTERASE17 is co-expressed with and processed by SBT3.5, a subtilisin-like serine protease. Ann. Bot. 114:1161-1175Abstract (in Pubmed)Journal Link
Schaller, A. (2013): Plant subtilisins. In: Handbook of proteolytic enzymes, 3rd Ed. (N.D. Rawlings, G. Salvesen, Eds.) Vol. 3, chapter 717, pp. 3247-3254, Academic Press. ISBN 978-0-12-382219-2NScience DirectBook Link
Schaller, A., Stintzi, A., Graff, L. (2012): Subtilases - versatile tools for protein turnover, plant development, and interactions with the environment. Physiol. Plant. 145: 52-66Abstrcact (in Pubmed)Journal Link
Rose, R., Schaller, A., Ottmann, C. (2010): Structural features of plant subtilases. Plant Signal. Behav., in pressVolltextAbstract (PubMed)
Ottmann, C., Rose, R., Huttenlocher, F., Hauske, P., Kaiser, M., Huber, R., Schaller, A. (2009): Structural basis for calcium-independence and activation by dimerization of tomato subtilase 3. Proc. Natl. Acad. Sci. USA 106: 17223-17228VolltextAbstract (PubMed)
Rose, R., Huttenlocher, F., Cedzich, A., Kaiser, M., Schaller, A., Ottmann, C. (2009): Purification, crystallization and preliminary X-ray diffraction analysis of a plant subtilase. Acta Cryst. F 65, 522-525.VolltextAbstract (PubMed)
Cedzich, A., Huttenlocher, F., Kuhn, B.M., Pfannstiel, J., Gabler, L., Stintzi, A., Schaller, A. (2009): The protease-associated (PA) domain and C-terminal extension are required for zymogen processing, sorting within the secretory pathway and activity of tomato subtilase 3 (SlSBT3). J. Biol. Chem. 284: 14068-14078.VolltextAbstract (PubMed)

Rautengarten, C., Steinhauser, D., Büssis, D., Stintzi, A., Schaller, A., Kopka, J., Altmann, T. (2005): Inferring hypotheses on functional relationships of genes: Analysis of the Arabidopsis thaliana subtilase gene family. PLoS Comput. Biol. 1(4): e40

VolltextAbstract (PubMed)
Schaller, A. (2004): A cut above the rest: the regulatory function of plant proteases. Planta 220: 183-197.VolltextAbstract (PubMed)
Schaller, A. (2001). Bioactive peptides as signal molecules in plant defense, growth, and development. In: Studies in Natural Products Chemistry: Bioactive Natural Products (Part F), Vol. 25; Atta-Ur-Rahman, Ed.; Elsevier, Amsterdam, pp. 367-411Buchbeitrag
Hauser, F., Strassner, J., and Schaller, A. (2001) Cloning, expression, and characterization of tomato (Lycopersicon esculentum) aminopeptidase P. J. Biol. Chem. 276, 31732-31737.VolltextAbstract (PubMed)
Janzik, I., Macheroux, P., Amrhein, N., and Schaller, A. (2000). LeSBT1, a subtilase from tomato plants: overexpression in insect cells, purification, and characterization. J. Biol. Chem. 275, 5193-5199. VolltextAbstract (PubMed)
Meichtry, J., Amrhein, N., and Schaller, A. (1999). Characterization of the subtilase gene family in tomato (Lycopersicon esculentum Mill.). Plant Mol. Biol. 39, 749-760.VolltextAbstract (PubMed)
Schaller, A. and Ryan, C.A. (1994). Identification of a 50-kDa systemin-binding protein in tomato plasma membranes having kex2p-like properties. Proc. Natl. Acad. Sci. USA 91, 11802-11806.VolltextAbstract (PubMed)