Defense against insect herbivores

Manduca sexta feeding on a tomato leaf

Plants respond to insect herbivory with the synthesis and accumulation of defense proteins (systemic wound response proteins) which help to deter the insect predator.

We try to understand the molecular mechanisms that form the basis of such plant defense reactions.

Current models suggest that wounding by herbivorous insects results in the release of systemin, a peptide hormone central to wound signal transduction. Perception of systemin at the cell surface causes the activation of the octadecanoid pathway for the production of jasmonic acid. The accumulation of jasmonic acid ultimately results in the induction of defense gene expression and the accumulation of proteins deleterious to the insect herbivore.

It is still largely unknown how systemin is released from its precursor prosystemin and how the perception of systemin at the cell surface triggers the activation of an intracelllular signaling cascade. We address these questions at the genetic (mutagensis and mutant screening), the molecular (identification and cloning of the genes involved), the biochemical (expression, purification, and characterization of recombinant proteins), and cell biological (localization of signal pathway elements) levels using tomato plants as well as Arabidopsis as model systems.

A detailed understanding of the regulatory mechanisms will enable us to augment natural plant defense responses allowing for a reduction of chemical pesticides and more sustainable agricultural practices.

Publications

Wang, X., Li, R., Stintzi, A., Schaller, A. (2024).  Automated Real-Time Monitoring of Extracellular pH to Assess Early Plant Defense Signaling. In: Schaller, A. (eds) Plant Peptide Hormones and Growth Factors. Meth. Mol. Biol., vol 2731: 169-178. Journal LinkAbstract (in PubMed)
Li, R., Schaller, A., Stintzi, A. (2024). Quantitative Measurement of Pattern-Triggered ROS Burst as an Early Immune Response in Tomato. In: Schaller, A. (eds) Plant Peptide Hormones and Growth Factors. Meth. Mol. Biol., vol 2731:157-168.Journal LinkAbstract (in PubMed)
Haj Ahmad, F., Wu, X., Stintzi, A., Schaller, A., Schulze, W.X. (2019):  The systemin signaling cascade as derived from time course analyses of the systemin-responsive phosphoproteome. Mol. Cell. Proteomics 18: 1526-1542Journal LinkAbstract (in PubMed)
Chini, A., Monte, I., Zamarreño, A.M., Hamberg, M., Lassueur, S., Reymond, P., Weiss, S., Stintzi, A., Schaller, A., Porzel, A., García-Mina, J.M., Solano, R. (2018): An ORP3-independent pathway uses 4,5-didehydro-jasmonate for jasmonate synthesis. Nature Chem. Biol. 14: 171–178Journal LinkAbstract (in PubMed)
Beloshistov, R.E., Dreizler, K., Galiullina, R.A., Tuzhikov, A.I., Serebryakova, M.V., Reichardt, S., Shaw, J., Taliansky, M.E., Pfannstiel, J., Chichkova, N.V., Stintzi, A., Schaller, A., Vartapetian, A.B. (2018):  Phytaspase-mediated precursor processing and maturation of the wound hormone systemin. New. Phytol. 218: 1167–1178Journal LinkAbstract (in PubMed)
Meyer, M., Huttenlocher, F., Cedzich, A., Procopio, S., Stroeder, J., Pau-Roblot, C., Lequart-Pillon, M., Pelloux, J., Stintzi, A., Schaller, A. (2016): The subtilisin-like protease SBT3 contributes to insect resistance in tomato. J. Exp. Bot. 67: 4325-4338Journal LinkAbstract (in PubMed)
Bosch, M., Berger, S., Schaller, A., Stintzi, A. (2014) Jasmonate-dependent induction of polyphenol oxidase activity in tomato foliage is important for defense against Spodoptera exigua but not against Manduca sexta. BMC Plant Biol. 14: 257Journal LinkAbstract (in PubMed)
Bosch, M., Wright, L.P., Gershenzon, J., Wasternack, C., Hause, B., Schaller, A., Stintzi, A. (2014): Jasmonic acid and its precursor 12-oxophytodienoic acid control different aspects of constitutive and induced herbivore defenses in tomato. Plant Physiol. 166: 396-410.Journal LinkAbstract (in PubMed)
Rimon Knopf, R., Feder, A., Mayer, K., Lin, A., Rozenberg, M., Schaller, A., Zach, A. (2012) Rhomboid proteins in the chloroplast envelope affect the level of allene oxide synthase in Arabidopsis thaliana. Plant J. 72: 559-571Journal LinkAbstract (in PubMed)
Schaller, A., Stintzi, A. (2009): Enzymes in jasmonate biosynthesis - structure, function, regulation. Phytochemistry, 70: 1532-1538.Journal LinkAbstract (in PubMed)
Breithaupt, C., Kurzbauer, R., Schaller, F., Stintzi, A., Schaller, A., Huber, R., Macheroux, P., Clausen, T. (2009): Structural basis of substrate specificity of plant 12-oxophytodienoate reductases. J. Mol. Biol. 392: 1266-1277Journal LinkAbstract (in PubMed)
Schaller, A., Stintzi, A. (2008): Jasmonate biosynthesis and signaling for induced plant defense against herbivory. In: Induced Plant Resistance against Herbivory. A. Schaller (ed), Springer, pp. 349-366.Volltext als PDFAbstract (in PubMed)
Howe, G.A., Schaller, A. (2008): Direct defenses in plants and their induction by wounding and insect herbivores. In: Induced plant resistance against herbivory (A. Schaller, Ed.) Springer, HeidelbergVolltext als PDFAbstract (in PubMed)
Strassner, J. Schaller, F. Frick, U. B., Howe, G. A., Weiler, E. W., Amrhein, N. Macheroux, P. Schaller, A. (2002): Characterization and cDNA-microarray expression analysis of 12-oxophytodienoate reductases reveals differential roles for octadecanoid biosynthesis in the local versus the systemic wound response. Plant J. 32, 585-601.Volltext als PDFAbstract (in PubMed)
Schaller A. (2002): Die Abwehr von Fressfeinden: Selbstverteidigung im Pflanzenreich. Vierteljahresschrift der Naturforschenden Gesellschaft in Zürich 147, 141-150.Abstract + VolltextVolltext als PDF
Rutschmann, F. Stalder, U. Piotrowski, M. Oecking, C., Schaller, A. (2002): LeCPK1, a calcium-dependent protein kinase from tomato: plasma membrane targeting and biochemical characterization. Plant Physiol. 129, 156-168.Abstract + VolltextAbstract (in PubMed)
Frasson, D. and Schaller, A. (2001): Induction of wound response gene expression by ionophores. Planta 212, 431-435. Abstract + VolltextAbstract (in PubMed)
Schaller, A. (2001): Bioactive peptides as signal molecules in plant defense, growth, and development. In: Studies in Natural Products Chemistry: Bioactive Natural Products (Part F), Vol. 25; Atta-Ur-Rahman, Ed.; Elsevier, Amsterdam, pp. 367-411.Buchbeitrag
Vetsch, M., Janzik, I., and Schaller, A. (2000): Characterization of prosystemin expressed in the baculovirus/insect cell system reveals biological activity of the systemin precursor. Planta 211, 91-97.Abstract + VolltextAbstract (in PubMed)
Schaller, A., and Oecking, C. (1999): Modulation of plasma membrane H+-ATPase activity differentially activates wound and pathogen defense responses in tomato plants. Plant Cell 11, 263-272.Abstract + VolltextAbstract (in PubMed)
Schaller, A. (1999): Oligopeptide signaling and the action of systemin. Plant Mol. Biol. 40, 763-769.AbstractAbstract (in PubMed)
Schaller, A. (1998): Action of proteolysis resistant systemin analogues in wound-signalling. Phytochemistry 47, 605-612.AbstractAbstract (in PubMed)
Schaller, A. and Ryan, C.A. (1996): Systemin: A polypeptide defense signal in plants. BioEssays 18, 27-33.AbstractAbstract (in PubMed)
Schaller, A. and Ryan, C.A. (1996): Molecular cloning of a leaf cDNA encoding aspartic protease, a systemic wound response protein. Plant Mol. Biol. 35, 1073-1077.Abstract (in PubMed)
Schaller, A., Bergey, D.R. and Ryan, C.A. (1995): Induction of wound response genes in tomato leaves by bestatin, an inhibitor of amino peptidases. Plant Cell 7, 1893-1898.Abstract + VolltextAbstract (in PubMed)
Schaller, A. and Ryan, C.A. (1994): Identification of a 50-kDa systemin-binding protein in tomato plasma membranes having kex2p-like properties. Proc. Natl. Acad. Sci. USA 91, 11802-11806.Abstract + VolltextAbstract (in PubMed)